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We have analyzed a probabilistic cellular automaton to describe the T-helper cells response under
parasitic infections. The evolution rules are of totalistic type and possess “up-down” symmetry. The
automaton displays a dynamical phase transition, from a disordered state to an ordered one, which
takes place through a spontaneous symmetry breaking. In the ordered phase, one type of T-helper
cells predominates over the others. The phase transition was studied both by a pair approximation
and by Monte Carlo simulations. In addition, we were able to obtain some exact results for the

densities of T-helper cells.

PACS number(s): 87.10.4e

I. INTRODUCTION

The use of cellular automata and stochastic lattice gas
models to mimic systems in the area of biological sci-
ences [1-10] gives us a better explanation of the micro-
scopic mechanisms that lead to the macroscopic behavior
of the systems. These statistical-mechanical treatments,
with probabilistic local rules, take into account the fluc-
tuations that play an important role in determining the
critical behavior of the system. From the point of view

of nonequilibrium statistical mechanics these models are

very useful because they are simple and can display very
intricate behavior not well understood yet. In the present
work we pursue this approach by studying a probabilis-
tic cellular automaton to describe one part of the cel-
lular immune system [4,9-13]. The automaton explains
some cellular mechanisms of the immune system that are
of interest in biological sciences by exploring features of
nonequilibrium phase transitions present in the model.
Recently Brass et al. [9,10] have introduced a cellular
automaton that models the polarization of the T-helper
cells when mice are exposed to parasitic infections. Their
model considers three subsets of T-helper cells and the
processes that result in the change from one type of cell
to another one. T-helper cells that have not yet been pre-
sented to the antigen are denoted by Ty0. Two different
antigen presentation routes, in which THO0 cells develop
into Tyl or Ty?2 cells are included in the model to rep-
resent the populations of antigen presentation cells. In
order to mimic the competition between mature T-helper
cells, the induction Tg0 — Ty 1 (TH2) is prohibited when
a TyO cell has a majority of T2 (Tg1) neighbors. This
happens because mature cells produce cytokines, which
support neighboring cells of the same kind but suppress
cells of different type. Finally, a cutoff Nt is introduced
such that cells not restimulated by appropriate antigen
within this time die (substituted by Ty0 cells). Starting

1063-651X/96/53(4)/3976(6)/$10.00 53

from a system composed only of TH0 cells, via Monte
Carlo simulation in cubic lattices, the model can dis-
play a steady state with a predominance of one type of
cells (polarization). The polarization occurs as one varies
the antigen density or the cutoff N7, even in the case
of equal populations of presenting antigen cells. In this
case, a spontaneous symmetry breaking occurs in agree-
ment with experimental results obtained by Else et al.
[14] for the B10.D2n strain of mice.

Here we propose a modified version of the model de-
vised by Brass et al. by considering a probabilistic cellu-
lar automaton where we allow the death of cells T 1 and
Ty2 to happen at each time step with a given probability
r. This rule is distinct from that considered by Brass et
al. in the sense that the cutoff NT (lifetime of the cells
Tu1 and Ty2) was eliminated in favor of a mean lifetime
related to a probability r. The cells Ty 0 develop into Ty1
or Ty2 cells with a probability that depends on the type
of neighboring cells and on a parameter p, related to the
antigen density.

We were able to find some exact results for such a
model. For instance, under any parasitic conditions (any
values of p and r) and for any spatial dimension, the
density of TH0 cells and the probability of having any
agglomeration of Ty0 cells were obtained exactly. We
have also studied the steady states of the system by us-
ing a pair approximation and by perfoming Monte Carlo
simulations in square lattices.

II. MODEL

The system we have studied is a probabilistic cellu-
lar automaton that evolves in time according to local
stochastic rules. We consider a lattice with IV sites in
which each site can be occupied by three kinds of cells:
THO, Ty, or Tg2. To each site ¢ we attach a variable
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o; that takes the value 0,1, or —1 according to whether
the site is occupied by a TH0, a Tyl, or a Ty2 cell.
The microscopic state of the system is represented by
o = (01,02,...,0N).

The time evolution of the probability P,(o) of state o
at time £ is governed by the equation

Pry1(0) = 3" W(o'|0)Po(o), 1)

where W (o'|0) is the transition probability from state o
to state o’ that must obey the condition

S W(d'lo) =1. (2)

A system described by a cellular automaton evolves at
discrete time steps and all the sites are updated simulta-
neously. Using this condition, the transition probability
is written as

N
W(o'lo) = [Jwiloilo), 3)

i=1

where w;(o}|o) is the conditional probability that site 3,
at time £ + 1, be in the state o} given that, at time £,
the state of the system is 0. The transition probability
w;(o}|o) obeys the property

wi(0]o) + wi(1]o) +wi(-1l0) = 1, @

so that Eq. (2) is fulfilled. Usually, the transition prob-
ability w; depends only on a neighborhood of site 3.
The cellular automaton considered here belongs to
the class of totalistic cellular automata [15] for which
w;(o}|o) depends on o; and on the sum ) 50;4s of dy-
namical variables of the neighborhood of i. Actually, it is
a special kind of totalistic automaton that depends only
on the sign of this sum. More specifically, if we define

s;(o) by

1 if £€>0
8 = S(Z 0'i+5) where S(§) = 0 if £€=0 (5)
5 -1 if £€<0,

then the transition probability will be denoted by
w;(o}|os, 8:).
The transition probabilities are given by the rules

w,'(+1(a,-,\s,-) = p&(a,-,O){&(s,-, +1) + %5(5,',0)}
+(1 —r7)é(0s, +1), (6)

w,-(—lla‘,-,s,-) = p(s(a',',O){(S(S,', —1) + %5(8,;,0)}
+(1 = r)é(0i,-1), (7)
w; (0|03, 8;) = (1 — p)é(04,0) + r{6(0i,1) + 8(0;, —1)}.
(8)

These rules have “up-down” symmetry
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w;(0}|03, 8:) = wi(—0}| — 03, —3;), (9)

so that we expect, following Grinstein et al. [16], that
this probabilistic cellular automaton is in the same uni-
versality class as kinetic Ising models.

Our aim is to study the automaton defined by these
rules. We are primarily interested in such averages as
the number of cells of each type and correlations of cells
placed in neighboring sites. We consider the case where
the system is homogeneous and denote by x,, vy, and z,
the mean occupation number of cells of types Tx1, Tx2,
and T'HO0, respectively, at time £ (notice that z,+y,+2, =
1). The correlation between Tg1 and T'50 cells placed
on neighboring sites is denoted by u, and that between
Tr2 and THO is denoted by v,.

From the evolution equation for P,;(c) we get the fol-
lowing equations for the time evolution of the mean oc-
cupation number of cells and for the correlations. The
evolution equation for z; and y, are given formally by

Te1 = (wi(1|oi, 8i))e (10)

and
Yer1 = (wi(—1]0oi, 8:))e- (11)
The evolution equations for the two-site correlations u,

and v, are given formally by

w1 = (wi(llo, s:)w;(0]oj, 55))e (12)

and
ver1 = (wi(—1loi, 8:)w; (0|0, 85) e, (13)

where ¢ and j are nearest-neighbor sites. All other
nearest-neighbor two-site correlation functions are given
in a similar way.

III. EXACT RESULTS

From the dynamical rules we see that the transition
probability w;(0|o;, s;) to the state o = 0 does not de-
pend on s;, i.e., it depends only on the state of site z. This
leads to conservation laws that we will deduce below.

Let us define the random variable 7; that takes the
value 0 when o; = 0 and the value 1 when o; = £1, i.e.,

7n; = of. The joint probability Q¢(n) = Q¢(n1,72, ..., 7n)
is then defined by

N
Qe(n) =Y [T 6, o?) Pe(o). (14)

o i=1

From the evolution equation for P(o), it is possible to
obtain the time evolution of Q,(7), which is given by

N
Qerr(n) =Y [ ®:(milm)Qe(m), (15)

n' i=1
where
W; (m;|m:) = &(ni, 0){8(m:,0)(1 — p) + 8(m:, 1)r}
+ 8(n;, 1){8(m:, 0)p + 8(mi, 1) (1 — 1)}, (16)
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and is interpreted as the probability of changing the state
of site i from state 7} to state 7.
The time evolution equation for Q.(n) can be solved

exactly. The solution is Q¢(n) = []; Qe(m:), where Q¢(n;)
evolves as

Qena(m) = D @i(nl|ni)Qe(ms), (17)
ni=%1
Qe+1(0) = (1 — p)Qe(0) + 7Q(1) (18)
and
Qe+1(1) = pQe(0) + (1 — 7)Qe(1). (19)
In the stationary state
__r __p
QO =" o =-2, (20)

so that the stationary solution Q(n) will be

N
Q(n) = HQ(m)~ (21)

Under stationary conditions we get then the exact re-
sult

N N
> P@ [ éo) = [[@m) (22

concerning the stationary probability P(c). It follows
that the probability of any cluster of M sites occupied
by THO cells is obtained exactly and is given by

p:r)M. (23)

P(0,0,...,0) = [Q(O)]M = (
M

In particular, the density of TyO0 cells is given by
r
P(0) = .
0=

Other exact results that can be obtained from Eq. (22)
are

(24)

P(10) + P(-10) = Q(10) = Q(1)Q(0), (25)
P(11) + P(1 — 1) + P(—11) + P(-1 — 1)

=Q(1,1) = [Q(1)]* (26)
and
_ M
P(1,0,0;V..’..,0)+P(—1,0,0;‘;.,0)_Q(l)[Q(O)] . (27

IV. STEADY STATES

The system evolves in time according to the local
Markovian rules given by Egs. (6)—(8) and eventually
attains a steady state. The steady states of this model
can be of two types: a disordered steady state, charac-
terized by a = 0, and an ordered phase, characterized
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by a # 0, where a = z — y is the order parameter. The
ordered phase characterizes the system when one type of
cells predominates: either Tx1 or Tg2.

We point out that, for any value of the parameters
p and 7, the density of Ty0 cells at the steady state is
obtained exactly from Eq. (24) and is given by

r
p+r

z=P(0) = (28)
As a consequence of the above result, the sum 8=z + vy
of the densities z and y of Tyl and Ty2 cells at the
stationary state is obtained exactly, since z +y =1 — 2,
and is given by

p= v (29)

A. Disordered steady state

In the disordered state the numbers of T;1 and TH2
cells are the same (o = 0). The densities z, y, and 2 can
be obtained exactly and are given by

P

$=y:—-———2(p+r),

(30)
z is given by the expression (28).

The probability v = P(10) of finding a.nearest-
neighbor pair of Tyl and THO cells and v = P(—10)
of finding a nearest-neighbor pair of Ty2 and THO cells
can also be obtained exactly. Indeed, from the exact re-
sults given by Eq. (25), and since P(10) = P(—10) in
the disordered state, we have

_pr
2(p+1)%

Notice that not all the probabilities of any set of dy-
namic variables {o;} (corresponding to a cluster of three
or more sites) can be obtained exactly. If it were possi-
ble to find all such probabilities, we would obtain the sta-
tionary probability P(c) exactly for the disordered state.
But this does not seem to be possible since the present
model does not satisfy detailed balance.

w=v=2Q)Q0) = 5(1-2)z = (31)

B. Ordered state

At a given instant ¢, the sites occupied by Ty1 and
Tg2 cells form clusters of several sizes. As long as these
clusters are finite, it is not possible for the system to
sustain an ordered state. Only when these clusters grow
until the appearence of an infinite one, which is the per-
colating cluster, will the occurrence of an ordered state
be possible. If p. is the critical concentration for site per-
colation for the given lattice, then the ordered state can
exist only if

p
p+r

z+y= > pe (32)
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or
1
Te=-1

P Pc (33)

For a one-dimensional model we therefore expect no or-
dered phase since p. = 1.

In the ordered state, where x # y or a # 0, the average
number of one type of cells, Ty1 or Tx2, predominates.
Even in this state the mean number of Tx0 cells is given
by the exact result (28).

Next, we use an analytical approach to study the or-
dered state and find the transition line in the phase dia-
gram in the space of parameters (r,p). To calculate the
averages on the right-hand sides of Eqs. (10) and (11), we
need the probability of a cluster composed by a central
site and its nearest-neighbor sites. We approximate the
probability of this cluster by using a dynamical mean-
field approximation [17-19] at the level of two-site corre-
lations, the so-called pair approximation. By using the
pair approximation the probability of a cluster composed
by a central site ¢ and its nearest neighbors is written as

P(O’z) H P(U,, az+6 , (34)

P(o;)

where the product is over the nearest-neighbor sites of
site <.

We consider a regular square lattice and obtain a closed
set of evolution equations for the densities =, and y, and
the pair correlations u, and v¢. From Egs. (10)-(13) and
using the approximation above we get the closed set of

equations for the variables ay = (xs — y¢), B¢ = (ze + ye),
¢ = (ug — vg), and g = (ug + ve),
ae+1 = (1 - 'I')ag +p¢tzl 3{4w¢ + 6’!1)[1/)[
+3 (4we + 2) (397 — ¢7)}, (35)
Ber1=p+ (1 =7 —p)By, (36)
ber1=r(1—r)ag+(1—7)(1—p—7)de
+2(1 — p)z; 2pe{3w} + 3¢ew; + 3 (397 — ¢7)we}
+ prz, 3(}5[{11)[ + 31,b¢wl
+ 1(39F — 62)(2¢e + 3wp)},  (37)
and
Yer1 =p(l—p)+(r—p)A—p—r)Be+ (1—p—1)y,
(38)

where z; = 1 — B¢ and wy = 1 — B¢ — 4. The stationary
solution is obtained by an iterative procedure.

For a fixed value of p, the trivial solution corresponding
to the disordered state and given by Egs. (30) and (31),
or by

P pr
01 0 K
a= ,B—p o ¢=0, 1/)-(1) mE

(39)
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is stable for high values of r. As the parameter r decrease,
the trivial solution loses its stability when a spontaneous
symmetry breaking takes place at a critical value r.. The
critical parameter can be obtained by performing a lin-
ear stability analysis around the trivial solution. Due to
structure of the set of Egs. (35)—(38) it suffices to study
the eigenvalues of the 2 x 2 matrix

Ay Ajp
40
( A1 Az ) ’ (40)
where
A11 =1- r, (41)
Ajz = pz 3 (4w? + 69pw? + 692w + %¢3)’ (42)
A21 = 7‘(1 - 7'), (43)

and
Azz = (1=7)(1=p—7)+3p(1—p)z~*(w® + Y’ + ;¢ %w)
+ §9%w + 39°), (44)

where z = r/(p+r), w = r2/(p+r)%, and ¢ = pr/(p+r)2.

The same analysis can be done in the more realistic
situation in which r is fixed and p is varied. In order to
make a comparison with the results obtained by Brass et

+ prz—3(w? 4 3yw?

(a)

0.6 q

N~ =0 ZEY

(b)

0.4 B

0.2 B

FIG. 1. (a) Densities z and y of Ty 1 and Ty2 cells, respec-
tively, according to the pair approximation, as functions of 7,
for p = 0.3. (b) Order parameter a = (z — y), according to
the pair approximation, as a function of r, for p = 0.3.
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FIG. 2. Phase diagram in the r-p plane according to the
pair approximation.

al. easy we have chosen the death probability r as the
variable.

The behavior of the densities z and y of Ti1 and Tx2
cells, respectively, as functions of r (for a fixed value of
p) is shown in Fig. 1(a). The density of one of the cells
(Ta1 or Ty2) approaches 1 in the limit where r — 0 with
p fixed. The densities become identical when r = r.. In
Fig. 1(b) we show the behavior of o, the order param-
eter, as a function of r. In Fig. 2 we show the phase
diagram for the present model defined on a square lattice
in the pair approximation. The critical line was obtained
by analyzing the eigenvalues of the matrix (40). We ob-
serve that the critical points on the transition line in the
phase diagram are always located according to Eq. (33).
The conjecture made in Sec. IV B is accomplished if we
identify the pair approximation in a square lattice with
the solution coming from a Bethe lattice of coordination
number 4. For a Bethe lattice of coordination 4 the crit-
ical concentration for site percolation is p. = 1/3 [20],
which leads to p/r. > 1/2.

V. MONTE CARLO SIMULATIONS

We have performed Monte Carlo simulations for sev-
eral values of p and r. The implementation of the rules
was done in a synchronized way. In one dimension we
found no ordered state, as expected from the analysis of
the preceding section. In two dimensions, however, the
ordered state is present in the numerical experiments and
we observe a phase diagram very similar to that obtained
by the pair approximation, at least for low values of p.
Simulations run on a square lattice at high values of r,
for instance, have led to a steady state in which both
Tyl and T2 cells were present [see Fig. 3(a)]. For sim-
ulations done at low values of » the numbers of Ty 1 cells
and T2 cells at the stationary state are completely dif-
ferent [see Fig. 3(b)], which suggests that one consider
the mean difference between the number of Ty 1 and T2
cells as the order parameter of this nonequilibrium phase
transition.

In Fig. 4 we plot the densities of Tyl and Ty2
cells against the value of the death probability r, when
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FIG. 3. Number of Ty1 and Ty2 cells as a function of the
number of Monte Carlo steps (MCS) with p = 0.3 for (a)
r = 0.4 and (b) r = 0.1.

p = 0.3. It is worthwhile to notice that the critical value
re = 0.19 satisfies Eq. (33). Indeed, for a square lat-
tice p. = 0.593 [20] and for p = 0.3 it follows from (33)
that r. < 0.206, which is satisfied here. In addition,
the equilibrium values of the densities for r > r. are in
complete agreement with the exact results contained in

T T - T -
p=03 B
oTH1 cells +
oTy2 cells -
D
E 4
N
S
1 B
T
I
0.4 . B
E 1-z/2 °
0.3 .. —
0.2 | K g
o
0.1} ° 4
. NP R .
0 01 02 03 04 05 08 07 08 09

FIG. 4. Densities of Ty1 and Tx2 cells as functions of the
death probability 7, when p = 0.3. The dots are data obtained
through Monte Carlo simulations. The line (1 — 2)/2 is the
exact result for the cell population densities. The line 1 — z
corresponds to the asymptotic (small r) result for one of the
densities, where z =r/(p + 7).
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Eqgs. (28) and (30). In contrast to the clean results ob-
tained for high values of r, we found strong fluctuations
at the vicinity of the critical parameter r.. However, when
r < 7. results are again in agreement with exact results

[Egs. (28) and (29)].

VI. CONCLUSION

We have analyzed a three-state probabilistic cellular
automaton whose dynamical rules are invariant under the
permutation between two of three states. As one varies
the parameters, the automaton displays a spontaneous
symmetry breaking between these two states, giving rise
to a nonequilibrium phase transition. The model we dealt
with, similar to the one devised by Brass et al., has the
purpose of describing the polarization of the T-helper
cells in terms of the local interactions occurring at the
lymph node, as a consequence of different cytokines pro-
duced by the mature cells. The present model exhibits
the same features of the Brass et al. automaton, but it
is amenable to an analytical approach.

The states of the model correspond to the occupation
of each site, in the lattice, by one of the three types of T'-
helper cells Ty0, Ty1, and Ty2. At each time step each
cell Tyl or Ty2 has the probability » of changing to a
THO cell and each THO cell can change into a Ty1 or T2
cell with a probability that depends on the neighborhood
of the site and on a parameter p. Moreover, the evolu-
tion rules have transition probabilities with “up-down”
(Tul ¢ Ty2) symmetry. We have constructed the evo-
lution equation for the average numbers of Ty0, Ty1, and
Ty2 cells, as well as the evolution equation for the cor-
relation functions. The system evolves in time and even-
tually reaches a steady state that can be of two types:
(a) disordered, in which the average numbers of Tx1 and
T2 cells are equal, and (b) ordered, in which either Ty1
or Ty2 cells predominate.

The average number of Ty 0 cells under stationary con-
ditions was obtained exactly and is given by r/(p + r).
This result does not depend on the dimension of the lat-

tice and it is true for any conditions of parasitic infection.
Another exact result is that the probability of an ag-
glomeration of T, 0 cells, of any size M, can be obtained
exactly, under stationary conditions, and it is given by
[/ + )M .

In the disordered state (low level of infection) the den-
sity of each type of cell can also be obtained exactly and
does not depend on the space dimension. Also the prob-
abilities of agglomeration of two cells, one being a Ty1 or
a Ty2 cell and the other being a THO0 cell, are obtained
exactly and are the product of the densities of these two
types of cells (under the conditions cited above).

The state where the Ty 1 or T2 cells predominate (po-
larized state) can exist only for lattices of two or more
space dimensions. The fact that this state cannot be
stable in one dimension can be explained by looking to
the mechanism that leads to the possibility of an ordered
phase. An agglomerate of T'y1 cells or an agglomerate of
Ty?2 cells is always a part of the cluster of Ty1 and T2
cells. Since in the ordered phase the former must be an
infinite agglomerate, so must the latter. Therefore, the
ordered state exists only when an infinite cluster of Ty1
or Ty2 cells occurs, that is, only when the concentra-
tion of these cells p/(p +r) is larger than the percolation
concentration p. for the corresponding lattice. In one di-
mension there will be no transition since in this case an
infinite percolation cluster exists only when p. = 1.

The ordered state was studied in a square lattice by us-
ing a pair approximation and by perfoming Monte Carlo
simulations. The results are in agreement with each
other. Both approaches show that the disordered state
is stable when the ratio 7/p is sufficiently large. As the
death probability r is decreased, at fixed p, it reaches
a critical value r. for which a symmetry breaking takes
place. For r < 7., the system is in the ordered phase.
As a consequence of the up-down symmetry exhibited by
the transition rules we expect that this transition is in the
same universality class of the kinetic Ising model. The
analysis of the critical behavior as well as of the spreading
of the damage in this model is planned to be the object
of a future work.
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